

ML molecular dynamics: ground state (II)

Pavlo O. Dral

dral@xmu.edu.cn; dr-dral.com

Xiamen University, China

A Package for **Atom**istic Simulations with **M**achine **L**earning **E MLQCDyn** reinventing dynamics

7 September 2022

ML-Infrared spectra

- To summarize, the steps Gaussian uses to perform vibrational analysis are
 - 1. Mass weight the Hessian

$$f_{\text{MWC}ij} = \frac{f_{\text{CART}ij}}{\sqrt{m_i m_j}} \qquad f_{\text{CART}ij} = \left(\frac{\partial^2 V}{\partial \xi_i \partial \xi_j}\right)_0$$

2. Determine the principal axes of inertia

 $\mathbf{I}' = \mathbf{X}^\dagger \mathbf{I} \mathbf{X}$

S = Dq

- 3. Generate coordinates in the rotating and translating frame
- Source: https://gaussian.com/vib/
 - 4. Transform the Hessian to internal coordinates and diagonalize

$$egin{aligned} \mathbf{f}_{ ext{INT}} &= \mathbf{D}^{\dagger} \mathbf{f}_{ ext{MWC}} \mathbf{D} \ & \mathbf{L}^{\dagger} \mathbf{f}_{ ext{INT}} \mathbf{L} &= \mathbf{\Lambda} \end{aligned}$$

5. Calculate the frequencies

$$\tilde{\nu}_i = \sqrt{\frac{\lambda_i}{4\pi^2 c^2}}$$

6. Calculate reduced mass, force constants and cartesian displacements

$$\mu_{i} = \left(\sum_{k}^{3N} l_{\text{CART}k,i}\right)^{-1}$$
$$k_{i} = 4\pi^{2} \tilde{\nu}_{i}^{2} c^{2} \mu_{i}$$
$$l_{\text{CART}} = \mathbf{MDL}$$

3

To summarize, the steps Gaussian uses to perform vibrational analysis are

1. Mass weight the Hessian

Variants of vibrational simulations

Vibrational Schrödinger equation:

$$\widehat{H}\Psi_{n}(\boldsymbol{q}) = \widehat{T}\Psi_{n}(\boldsymbol{q}) + V(\boldsymbol{q})\Psi_{n}(\boldsymbol{q}) = E_{n}\Psi_{n}(\boldsymbol{q})$$

$$V(\boldsymbol{Q}) = \frac{1}{2} \sum_{i=1}^{D} \omega_i Q_i^2$$

Easy to solve within harmonic approximation

Real potentials are anharmonic:

$$V(\mathbf{Q}) = \frac{1}{2} \sum_{i=1}^{D} \omega_i \ Q_i^2 + \left(\frac{1}{6} \sum_{i,j,k=1}^{D} \eta_{ijk} Q_i Q_j Q_k + \frac{1}{24} \sum_{i,j,k=1}^{D} \eta_{ijkl} Q_i Q_j Q_k Q_l\right) = V^{\text{harm}} + V'$$

Methods like VPT2, VCI, VSCF...

S. Manzhos, M. Ihara, T. Carrington, Machine learning for vibrational spectroscopy. In *Quantum Chemistry in the Age of Machine Learning*, P. O. Dral, Ed. Elsevier: 2022, in press. Paperback ISBN: 9780323900492

ML-VPT2

Transfer Learning to CCSD(T): Accurate Anharmonic Frequencies from Machine Learning Models

Silvan Käser, Eric D. Boittier, Meenu Upadhyay, and Markus Meuwly*

Cite This: https://doi.org/10.1021/acs.jctc.1c00249

ACCESS

III Metrics & More

Article Recommendations

ABSTRACT: The calculation of the anharmonic modes of small- to medium-sized molecules for assigning experimentally measured frequencies to the corresponding type of molecular motions is computationally challenging at sufficiently high levels of quantum chemical theory. Here, a practical and affordable way to calculate coupled-cluster quality anharmonic frequencies using second-order vibrational perturbation theory (VPT2) from machine-learned models is presented. The approach, referenced as "NN + VPT2", uses a high-dimensional neural network (PhysNet) to learn potential energy surfaces (PESs) at different levels of theory from which harmonic and VPT2 frequencies can be efficiently determined. The NN + VPT2 approach is applied to eight small- to medium-sized molecules (H₂CO, trans-HONO, HCOOH, CH₃OH, CH₃CHO, CH₃NO₂, CH₃COOH, and CH₃CONH₂) and frequencies are reported from NN-learned models at the MP2/aug-cc-pVTZ, CCSD(T)/aug-cc-pVTZ, and CCSD(T)-F12/aug-cc-pVTZ-F12 levels of theory. For the largest molecules and at the highest levels of theory, transfer learning (TL) is used to determine the necessary full-dimensional, near-equilibrium PESs. Overall, NN + VPT2

Supporting Information

yields anharmonic frequencies to within 20 cm⁻¹ of experimentally determined frequencies for close to 90% of the modes for the highest quality PES available and to within 10 cm⁻¹ for more than 60% of the modes. For the MP2 PESs only ~60% of the NN + VPT2 frequencies were within 20 cm⁻¹ of the experiment, with outliers up to ~150 cm⁻¹, compared to the experiment. It is also demonstrated that the approach allows to provide correct assignments for strongly interacting modes such as the OH bending and the OH torsional modes in formic acid monomer and the CO-stretch and OH-bend mode in acetic acid.

Variants of vibrational simulations

Also possible from molecular dynamics:

$$I(\omega) \propto \int \langle \boldsymbol{M}(\tau) \boldsymbol{M}(t+\tau) \rangle_{\tau} e^{-i\omega t} dt$$

where $\langle \boldsymbol{M}(\tau)\boldsymbol{M}(t+\tau)\rangle_{\tau}$ is the autocorrelation function of the dipole moment $\boldsymbol{M}(t) = \sum_{j=1}^{Np} e_j \boldsymbol{r}_j(t)$, where \boldsymbol{r}_j and e_j are charges of each of N_p particles.

S. Manzhos, M. Ihara, T. Carrington, Machine learning for vibrational spectroscopy. In *Quantum Chemistry in the Age of Machine Learning*, P. O. Dral, Ed. Elsevier: 2022, in press. Paperback ISBN: 9780323900492

Fig. 6 IR spectrum of the $C_{69}H_{140}$ alkane as predicted by the ML model based on the B2PLYP method.

M. Gastegger, J. Behler, P. Marquetand, *Chem. Sci.* **2017**, *8*, 6924 Pavlo Dral, dr-dral.com

What machine learning potential to choose?

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, M. Barbatti. *Chem. Sci.* **2021**, *12*, 14396–14413 P. O. Dral, F. Ge, B.-X. Xue, Y.-F. Hou, M. Pinheiro Jr, J. Huang, M. Barbatti. *Top. Curr. Chem.* **2021**, *379*, 27

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, M. Barbatti. Chem. Sci. 2021, 12, 14396–14413

MLatom's 3rd-party interfaces

DeePMD-kit

GAP

sGDML

TorchANI

PhysNet

ASE

Hyperopt

Sparrow

NX

Gaussian

MNDO

deepmodeling.com

libatoms.github.io/GAP

sgdml.org

aiqm.github.io/torchani

github.com/MMunibas/PhysNet

wiki.fysik.dtu.dk/ase

hyperopt.github.io/hyperopt

scine.ethz.ch/download/sparrow

<u>newtonx.org</u>

gaussian.com

mndo.kofo.mpg.de

ML algorithms

Linear regression

 $f(\mathbf{x}_i; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots$

Kernel ridge regression (KRR)

Number of parameters depends on the training set

 $f(\mathbf{x}_i; \boldsymbol{\alpha}) = \sum_{j=1}^{N_{\text{tr}}} \alpha_j k(\mathbf{x}_i, \mathbf{x}_j)$

'nonparametric model'

Examples: KREG, KRR-CM

Neural networks (NN)

Number of parameters is fixed

 $f(\mathbf{x}; \boldsymbol{\beta}) = \beta_0 + \beta_1 Z_1 + \beta_2 Z_2 + \cdots$

 $Z_m=\sigma(\alpha_{m0}+\alpha_{m1}x_1+\alpha_{m2}x_2+\cdots)$

'parametric model'

Examples: ANI-1ccx, AIQM1

The KREG Model

P. O. Dral, A. Owens, S. Yurchenko, W. Thiel, J. Chem. Phys. 2017, 146, 244108

sGDML – a symmetrized variant of the gradient-domain machine learning (GDML). It uses unnormalized permutationally invariant, Matérn kernel.

$$\mathbf{x}^{\mathrm{T}} = \begin{bmatrix} \cdots & \frac{1}{r_{a,b}} & \cdots \end{bmatrix} \qquad \qquad \frac{\partial f(\mathbf{x})}{\partial M_{at}} = \sum_{j=1}^{N_{\mathrm{tr}}} \sum_{b=1}^{N_{\mathrm{at}}} \sum_{u=1}^{3} \alpha_{j,bu} \frac{\partial^{2} k(\mathbf{x}, \mathbf{x}_{j})}{\partial M_{at} \partial M_{j,bu}} \\ \begin{pmatrix} \frac{\partial^{2} k(\mathbf{x}_{1}, \mathbf{x}_{1})}{\partial M_{1,11} \partial M_{1,11}} + \lambda & \cdots & \frac{\partial^{2} k\left(\mathbf{x}_{1}, \mathbf{x}_{N_{\mathrm{tr}}}\right)}{\partial M_{1,11} \partial M_{N_{\mathrm{tr}},N_{\mathrm{at}}^{3}}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} k\left(\mathbf{x}_{N_{\mathrm{tr}}}, \mathbf{x}_{1}\right)}{\partial M_{N_{\mathrm{tr}},N_{\mathrm{at}}^{3} \partial M_{1,11}}} & \cdots & \frac{\partial^{2} k\left(\mathbf{x}_{N_{\mathrm{tr}}}, \mathbf{x}_{N_{\mathrm{tr}}}\right)}{\partial M_{N_{\mathrm{tr}},N_{\mathrm{at}}^{3} \partial M_{N_{\mathrm{tr}},N_{\mathrm{at}}^{3}}} + \lambda \end{pmatrix} \begin{pmatrix} \alpha_{1,11} \\ \vdots \\ \alpha_{N_{\mathrm{tr}},N_{\mathrm{at}}^{3}} \end{pmatrix} = \begin{pmatrix} \frac{\partial y_{1}}{\partial M_{1,11}} \\ \vdots \\ \frac{\partial y_{N_{\mathrm{tr}}}}{\partial M_{N_{\mathrm{tr}},N_{\mathrm{at}}^{3}}} \end{pmatrix} \\ f(\mathbf{x}) = const + \sum_{j=1}^{N_{\mathrm{tr}}} \sum_{b=1}^{N_{\mathrm{at}}} \sum_{u=1}^{3} \alpha_{j,bu} \frac{\partial k(\mathbf{x}, \mathbf{x}_{j})}{\partial M_{j,bu}} \end{pmatrix}$$

S. Chmiela, H. E. Sauceda, K.-R. Müller, A. Tkatchenko. Nat. Commun. 2018, 9, 3887

Approach: Behler, Parrinello, *Phys. Rev. Lett.* **2007**, *98*, 146401 Figure: P. O. Dral, *J. Phys. Chem. Lett.* **2020**, *11*, 2336

Gaussian approximation potential (GAP)[1] with Smooth Overlap of Atomic Positions (SOAP)[2] descriptor

the atomic neighborhood density
the cutoff function
$$\rho_i(\mathbf{r}) = \sum_j \exp\left(-\frac{|\mathbf{r} - \mathbf{r}_{ij}|^2}{2\sigma_{atom}^2}\right) f_{cut}(|\mathbf{r}_{ij}|),$$

$$f_{cut}(r) = \begin{cases} 1, & r \leq r_{cut} - r_{\Delta}, \\ \frac{1}{2}\left(\cos\left(\pi\frac{r - r_{cut} + r_{\Delta}}{r_{\Delta}}\right) + 1\right), & r_{cut} - r_{\Delta} < r \leq r_{cut}, \\ 0, & r > r_{cut}, \end{cases}$$

[1] A. P. Bartók, M. C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. **2010**, *104*, 136403

[2] A. P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 2013, 87, 187115

DPMD and DeepPot-SE

DeePMD-kit[1] implements Deep Potential Molecular Dynamics (DPMD)[2] and Deep Potential - Smooth Edition (DeepPot-SE)[3]

the generalized local environment matrix \widetilde{R}^i

$$\begin{cases} s(r_{ij}), \frac{x_{ij}}{r_{ij}} s(r_{ij}), \frac{y_{ij}}{r_{ij}} s(r_{ij}), \frac{z_{ij}}{r_{ij}} s(r_{ij}) \end{cases}, \\ s(r_{ij}) = \begin{cases} \frac{1}{r_{ij}}, & r_{ij} < r_{cs} \\ \frac{1}{r_{ij}} \left(\frac{1}{2} \cos\left(\pi \frac{r_{ij} - r_{cs}}{r_c - r_{cs}}\right) + \frac{1}{2}\right), & r_{cs} < r_{ij} < r_{c} \\ 0, & r_{ij} > r_{c} \end{cases}$$

[1] H. Wang, L. Zhang, J. Han, W. E. Comput. Phys. Commun. 2018, 228, 178
[2] L. Zhang, J. Han, H. Wang, R. Car, W. E. *Phys. Rev. Lett.* **2018**, *120*, 143001
[3] L. F. Zhang, J. Q. Han, H. Wang, W. A. Saidi, R. Car, W. N. E. *Adv. Neural. Inf. Process. Syst.* **2018**, *31*, 4436

PhysNet[1] is using message-passing NN and so called 'learned' local descriptors

the embedding vector

$$\mathbf{x}_i^0 = \mathbf{e}_{z_i}$$

the coordinates are transformed to

$$g_k(r_{ij}) = f_c(r_{ij}) \cdot e^{-\beta_k (e^{-r_{ij}} - \mu_k)^2}$$

[1] O. T. Unke, M. Meuwly. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges. J. Chem. Theory Comput. **2019**, *15*, 3678

i.k≠i

ANI environment vectors (AEVs) consist of radial and angular atomic terms. Each element has its own subAEV:

$$G_{k}^{R} = \sum_{j \neq i} e^{-\eta \left(R_{ij} - R_{s}^{(k)}\right)^{2}} f_{c}(R_{ij})$$

$$G_{p,q}^{A} = 2^{1-\zeta} \sum_{i} \left(1 + \cos\left(\theta_{ijk} - \theta_{s}^{(q)}\right)\right)^{\zeta} e^{-\eta \left(\frac{R_{ij} + R_{ik}}{2} - R_{s}^{(p)}\right)^{2}} f_{c}(R_{ij}) f_{c}(R_{ik}).$$

the cutoff function

$$f_{\text{cut}}(r) = \begin{cases} 1, & r \leq r_{\text{cut}} - r_{\Delta}, \\ \frac{1}{2} \left(\cos \left(\pi \frac{r - r_{\text{cut}} + r_{\Delta}}{r_{\Delta}} \right) + 1 \right), & r_{\text{cut}} - r_{\Delta} < r \leq r_{\text{cut}}, \\ 0, & r > r_{\text{cut}}, \end{cases}$$

X. Gao, F. Ramezanghorbani, O. Isayev, J. S. Smith, A. E. Roitberg. *J. Chem. Inf. Model.* **2020**, *60*, 3408

KRR-CM vs KREG

KRR-CM – kernel ridge regression with Gaussian kernel and Coulomb matrix descriptor

Test set RMSEs in kcal/mol for models trained on 100 points of MD17 ethanol

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, M. Barbatti. Chem. Sci. 2021. DOI: 10.1039/D1SC03564A

KRR-CM vs KREG

KRR-CM – kernel ridge regression with Gaussian kernel and Coulomb matrix descriptor

Test set RMSEs in kcal/mol for models trained on 100 points of MD17 ethanol

KRR-CM	KREG
3.90±0.41	4.45±0.36

What do we mean by '100 training points?' Is validation set included? Let's use the term **'sub-training set'**!

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, M. Barbatti. Chem. Sci. 2021. DOI: 10.1039/D1SC03564A

KRR-CM vs KREG

KRR-CM – kernel ridge regression with Gaussian kernel and Coulomb matrix descriptor

Test set RMSEs in kcal/mol

Number of training points	KRR-CM	KREG
100	3.90±0.41	4.45±0.36
2500	0.70±0.02	0.52±0.01

What do we mean by '100 training points?' Is validation set included? Let's use the term **'sub-training set'**!

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, M. Barbatti. Chem. Sci. 2021, 12, 14396–14413

● ANI ▲ DPMD ◆ PhysNet □ GAP-SOAP ⊽ sGDML

Energies+forces

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, M. Barbatti. Chem. Sci. 2021, 12, 14396–14413

Machine learning potentials as force fields

Where do we need gradients?

Gradients:

- Geometry optimization
- Molecular dynamics

$$\frac{\partial^2 \mathbf{r}_{A,d}}{\partial t^2} = -\frac{\partial E}{\partial \mathbf{r}_{A,d}} \frac{1}{M_A}$$

$$\frac{\partial E}{\partial t}$$

 ∂r

How to calculate gradients with ML?

As first-order derivatives, e.g. in case of KRR:

$$\frac{\partial f(\mathbf{x}_i)}{\partial x_{i,d}} = \sum_{j=1}^{N_{\text{tr}}} \alpha_j \frac{\partial k(\mathbf{x}_i, \mathbf{x}_j)}{\partial x_{i,d}}$$
$$\frac{\partial k(x(\mathbf{M}_i), \mathbf{x}_j)}{\partial M_{i,at}} = \sum_{d=1}^{N_d} \frac{\partial k(\mathbf{x}_i, \mathbf{x}_j)}{\partial x_{i,d}} \frac{\partial x_{i,d}}{\partial M_{i,at}}$$
$$\frac{\partial^2 k(\mathbf{x}_i, \mathbf{x}_j)}{\partial M_{i,at} \partial M_{j,bu}} = \sum_{d=1}^{N_d} \sum_{e=1}^{N_d} \frac{\partial^2 k(\mathbf{x}_i, \mathbf{x}_j)}{\partial x_{i,d} \partial x_{j,e}} \frac{\partial x_{i,d}}{\partial M_{i,at}} \frac{\partial x_{j,e}}{\partial M_{j,bu}}$$

P. O. Dral, F. Ge, B.-X. Xue, Y.-F. Hou, M. Pinheiro Jr, J. Huang, M. Barbatti. *Top. Curr. Chem.* **2021**, *37*9, 27

P. O. Dral, F. Ge, B.-X. Xue, Y.-F. Hou, M. Pinheiro Jr, J. Huang, M. Barbatti. *Top. Curr. Chem.* **2021**, *37*9, 27

How to learn gradients with ML?

- Gradients also provide valuable additional information for training ML models.
- For N molecules, there are
- N energies, but $3N_{at} \times N$ gradients!
- Popular approach especially for NN MLPs:

$$f(\mathbf{x}_i; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots$$

$$\frac{\partial f(\mathbf{x}_i; \boldsymbol{\beta})}{\partial x_{i,d}} = \frac{\partial (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots)}{\partial x_{i,d}}$$

minimize Loss function = error for energies + error for gradients

$$L = L_{val} + w_{grxyz} L_{grxyz} \qquad \qquad L = \sqrt{L_{val} L_{grxyz}}$$

sGDML – a symmetrized variant of the gradient-domain machine learning (GDML). It uses unnormalized permutationally invariant, Matérn kernel.

S. Chmiela, H. E. Sauceda, K.-R. Müller, A. Tkatchenko. Towards exact molecular dynamics simulations with machine-learned force fields. *Nat. Commun.* **2018**, *9*, 3887

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, M. Barbatti. *Chem. Sci.* **2021**, *12*, 14396–14413 **MD17:** S. Chmiela, H. E. Sauceda, K.-R. Müller, A. Tkatchenko. *Nat. Commun.* **2018**, *9*, 3887; S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, K.-R. Müller. *Sci. Adv.* **2017**, *3*, e1603015.

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, M. Barbatti. Chem. Sci. 2021, 12, 14396–14413

Platform for Benchmarking

It is an open project as the development of ML potentials is not a static field. You are welcome to use the same protocols to update our benchmark results <u>http://mlatom.com/mlpbenchmark1/</u>

The minimum input for MLatom – can be used as a platform for testing ML potentials:

learningCurve
XYZfile=ethanol.xyz
Yfile=ethanol_energies.dat
IcNtrains=100,200,300,400,500
IcNrepeats=30,30,30,30,10
MLmodelType=[your model]

MLatom.com

Fuchun Ge

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, M. Barbatti. Chem. Sci. 2021, 12, 14396–14413

Good ML method for quantum dynamics?

TABLE II. Mean absolute prediction errors (MAEs), training, and average single step prediction times of all KRR models used in this work. KRR-L, KRR-G, KRR-DP, KRR-E, and KRR-M (n = 1, 2, 3, 4) denote kernel ridge regression models with linear kernel, Gaussian kernel, decayingperiodic kernel, exponential kernel, and Matern kernel with n = 1, 2, 3, 4, respectively.

	Trainable	Mean absolute error		Time [s]	
Model	Parameters	Symmetric	Asymmetric	Training	Prediction
KRR-L	72,000	$1.2 \cdot 10^{-2}$	$6.5 \cdot 10^{-2}$	196	1.6
KRR-G	72,000	$4.7 \cdot 10^{-4}$	$1.2 \cdot 10^{-3}$	220	1.6
KRR-DP	72,000	$4.3 \cdot 10^{-4}$	$2.0 \cdot 10^{-3}$	257	1.4
KRR-E	72,000	$2.1 \cdot 10^{-3}$	$3.3 \cdot 10^{-3}$	222	1.6
KRR-M1	72,000	$2.4{\cdot}10^{-4}$	$1.3 \cdot 10^{-3}$	260	1.6
KRR-M2	72,000	$2.2 \cdot 10^{-4}$	$2.7 \cdot 10^{-3}$	259	1.7
KRR-M3	72,000	$2.0{\cdot}10^{-4}$	$2.3) \cdot 10^{-3}$	279	1.7
KRR-M4	72,000	$2.3 \cdot 10^{-4}$	$2.1 \cdot 10^{-3}$	273	1.7

TABLE I. Hyperparameters, mean absolute prediction errors, total number of trainable parameters, training, and average single step prediction times of all ANN models studied in this work. For each recurrent layer the number of units is shown. The number of kernels X and kernel sizes Y for each convolutional layer is shown in parenthesis as (X,Y).

	Trainable	Lay	ers	Mean absolute error		Time [s]		
Model	Parameters	Layer 1	Layer 2	Symmetric	Asymmetric	Training	Prediction	
1D CNN	530,258	(235, 16)	(125,7)	$1.55 \cdot 10^{-3}$	$4.84 \cdot 10^{-2}$	465	3.8	
FFNN	520,045	754	646	$1.32 \cdot 10^{-3}$	$3.70 \cdot 10^{-2}$	82	3.3	
Recurrent Neural Networks								
LSTM	528,577	15	49	$1.58 \cdot 10^{-3}$	$2.35 \cdot 10^{-2}$	623	6.1	
GRU	553,453	60	50	$2.05 \cdot 10^{-3}$	$2.57 \cdot 10^{-2}$	668	4.4	
RNN	535,468	65	50	$3.00 \cdot 10^{-3}$	$6.17 \cdot 10^{-2}$	302	4.2	
Convolutional Recurrent Neural Networks								
CLSTM	501,965	(28, 16)	71	$1.17 \cdot 10^{-3}$	$2.50 \cdot 10^{-2}$	279	4.1	
CGRU	515,806	(55, 16)	73	$1.38 \cdot 10^{-3}$	$2.14{\cdot}10^{-2}$	294	4.7	
CRNN	$513,\!673$	(243, 16)	73	$1.46 \cdot 10^{-3}$	$3.61 \cdot 10^{-2}$	197	5.4	
	Convolutional Bidirectional Recurrent Neural Networks							
CBLSTM	568,022	(109, 16)	39	$1.17 \cdot 10^{-3}$	$2.84 {\cdot} 10^{-2}$	333	3.8	
CBGRU	514,860	(55, 16)	37	$1.54 \cdot 10^{-3}$	$3.68 \cdot 10^{-2}$	325	5.3	
CBRNN	508,842	(297, 16)	36	$2.50 \cdot 10^{-3}$	$3.58 \cdot 10^{-2}$	256	3.9	
Bidirectional Recurrent Neural Networks								
BLSTM	511,809	6	24	$2.12{\cdot}10^{-3}$	$2.56 \cdot 10^{-2}$	635	5.2	
BGRU	534,991	14	25	$2.28{\cdot}10^{-3}$	$2.48 {\cdot} 10^{-2}$	1109	6.7	
BRNN	511,959	37	24	$6.95 \cdot 10^{-3}$	$4.27 \cdot 10^{-1}$	396	5.4	

L. E. H. Rodriguez, A. Ullah, K. J. R. Espinosa, P. O. Dral, A. A. Kananenka. A comparative study of different machine learning methods for dissipative quantum dynamics. **2022**, *submitted*. *arXiv*: <u>https://arxiv.org/abs/2207.02417</u>.

J. S. Smith, O. Isayev, A. E. Roitberg, Chem. Sci. 2017, 8, 3192

Accuracy vs transferability vs cost

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral. Artificial Intelligence-Enhanced Quantum Chemical Method with Broad Applicability. *Nat. Commun.* **2021**, *12*, 7022.

Wei Wu

Olexandr Isayev

Peikun Zheng

Roman Zubatyuk

Artificial Intelligence-Enhanced Quantum Chemical Method 1

AIQM1

accurate and highly transferable ML+QC approach

Code available at: <u>http://mlatom.com/aiqm1/</u> (online calculations on a cloud)

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral. Artificial Intelligence-Enhanced Quantum Chemical Method with Broad Applicability. *Nat. Commun.* **2021**, *12*, 7022.

AIQM1: Semiempirical QM + NN + D4

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, *Nat. Commun.* **2021**, *12*, 7022 Pavlo Dral, dr-dral.com

Orthogonalization- and Dispersion-Corrected Methods 2 & 3 (ODM2 & ODM3 ODMx)

P. O. Dral, X. Wu, W. Thiel, J. Chem. Theory Comput. 2019, 15, 1743

State-of-the-art ODMx methods solve many inconsistencies of NDDO-based semiempirical QM methods

- Include orthogonalization effects
- Include penetration integrals
- Include core-valence interactions
- Include dispersion corrections as their integral part
- Parametrized on a balanced set of ground-state, excited-state and noncovalent properties
- Calculate heats of formation in *ab initio* manner with explicit ZPVE and thermal enthalpic corrections

P. O. Dral, X. Wu, W. Thiel, J. Chem. Theory Comput. 2019, 15, 1743

ODMx methods are the most consistent and robust

SQC methods to date

Mean Absolute Errors

		MNDO	OM2	OM2-D3T	ODM2
Heats of formation (CHNO set)	kcal/mol	6.36	3.05	5.10	2.64
Noncovalent interaction energies (S66x8 set)	kcal/mol	9.48	1.93	0.79	0.75
Vertical excitation energies (Thiel's set)	eV	1.44	0.46	0.46	0.35
Atomization energies w/o ZPVE at 0 K (TAE140 s	set) kcal/mol	20.13	14.93	14.27	/ 90
corre	cted	11.90	4.81	4.64	4.09

P. O. Dral, X. Wu, W. Thiel, J. Chem. Theory Comput. 2019, 15, 1743

Errors in vertical excitation energies

Benchmarking on Thiel's 2008 set:

Method	Mean absolute error, eV						
TD B3LYP/TZVP[1]	0.33						
AM1/MRCI[2]	1.23						
INDO/S[2]	0.56						
OM2/MRCI[1]	0.47						
OM3/MRCI[1]	0.42						
ODM2/MRCI[3]	0.35						
ODM3/MRCI[3]	0.33						

[1] D. Tuna, Y. Lu, A. Koslowski, W. Thiel, J. Chem. Theory Comput. 2016, 12, 4400
[2] M. R. Silva-Junior, W. Thiel, J. Chem. Theory Comput. 2010, 6, 1546
[3] P. O. Dral, X. Wu, W. Thiel, J. Chem. Theory Comput. 2019, 15, 1743

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, *Nat. Commun.* **2021**, *12*, 7022 Pavlo Dral, dr-dral.com

Figure: Pavlo O. Dral, Tetiana Zubatiuk, Bao-Xin Xue, Learning from multiple quantum chemical methods: Δlearning, transfer learning, co-kriging, and beyond. In *Quantum Chemistry in the Age of Machine Learning*, Pavlo O. Dral, Ed. Elsevier: 2022, in press. Paperback ISBN: 9780323900492

Figures: Pavlo O. Dral, Tetiana Zubatiuk, Bao-Xin Xue, Learning from multiple quantum chemical methods: Δlearning, transfer learning, co-kriging, and beyond. In *Quantum Chemistry in the Age of Machine Learning*, Pavlo O. Dral, Ed. Elsevier: 2022, in press. Paperback ISBN: 9780323900492

data set	0DM2	B3LYP/	ωB97X/	$\omega B97X\text{-}D/$	ωB97X/	ωB97X-D4/	ANI-	AIQM1	AIQM1	AIOM1	CCSD(T)*
uata set	ODW12	6-31G*	6-31G*	6-31G*	def2-TZVPP	def2-TZVPP	1ccx	@DFT*	@DFT	AlQMI	/CBS
				(energies, kcal/r	nol					
CHNO	2.64	6.71	4.10	3.84	3.21	2.76	—	2.49	2.12	0.87	—
G3/99	3.04	8.53	3.46	3.22	4.18	3.20	—	2.83	2.06	0.88	—
ISOMERS44 (ΔH_f)	1.16	8.08	3.57	3.53	4.52	3.78	—	3.00	2.27	0.42	—
ISOMERS44 (ΔH_r)	0.70	2.29	1.45	1.31	1.19	1.10	1.68	0.95	0.89	0.50	_
IsoL6/11	1.48	5.26	3.83	3.36	1.75	1.64	1.46	1.65	1.55	0.62	0.47
HC7/11	5.37	6.44	16.90	13.98	6.83	7.10	2.53	8.89	9.16	1.43	1.57
S66x8	0.75	1.70	0.97	1.22	0.49	0.49	2.20	0.69	0.52	0.56	0.09
WATER27	4.45	36.37	41.28	36.95	14.07	15.26	-	11.59	12.77	2.07	2.57
PA	16.62	8.04	7.33	8.38	3.75	3.72	—	16.04	16.02	10.53	0.32
G21IP	10.17	6.67	7.03	6.98	4.57	4.56	—	8.69	8.68	8.82	3.26
G21EA	13.93	28.51	28.41	27.72	8.42	8.41	—	12.94	12.93	13.97	8.09
Torsion	0.74	0.55	0.30	0.29	0.20	0.19	0.23	0.23	0.23	0.19	0.05
				exe	citation energie	s, eV					
Thiel's set	0.35	0.32	0.45	0.36	0.36	0.36	—	0.35	0.35	0.35	—
					bond lengths,	Å					
CHNO	0.015	0.006	0.008	0.007	0.010	0.010	0.011	0.010	0.010	0.007	—
MGHBL9	0.023	0.007	0.006	0.005	0.002	0.002	0.047	0.011	0.011	0.004	—
MGNHBL11	0.026	0.006	0.003	0.002	0.008	0.008	0.004	0.008	0.008	0.002	—
CATIONS41	0.023	0.011	0.009	0.010	0.011	0.011	—	0.015	0.015	0.017	—
					bond angles,	0					
CHNO	2.04	0.70	0.68	0.64	0.68	0.68	1.00	0.77	0.77	0.70	—
CATIONS41	2.21	0.52	0.37	0.44	0.46	0.46	_	1.48	1.48	1.26	—
	-				dihedral angles	, °					
CHNO	4.07	5.20	4.68	6.10	7.12	7.11	5.86	2.14	2.14	2.31	—
CATIONS41	2.49	0.31	0.32	0.40	0.19	0.19	—	0.76	0.76	0.72	—

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022

data set	ODM2	B3LYP/ 6-31G*	ωB97X/ 6-31G*	ωB97X-D/ 6-31G*	ωB97X/ def2-TZVPP	ωB97X-D4/ def2-TZVPP	ANI- 1ccx	AIQM1 @DFT*	AIQM1 @DFT	AIQM1	CCSD(T)* /CBS	
		energies, kcal/mol										
CHNO	2.64	6.71	4.10	3.84	3.21	2.76	—	2.49	2.12	0.87	—	
G3/99	3.04	8.53	3.46	3.22	4.18	3.20	—	2.83	2.06	0.88	—	
ISOMERS44 (ΔH_f)	1.16	8.08	3.57	3.53	4.52	3.78	_	3.00	2.27	0.42	—	
ISOMERS44 (ΔH_r)	0.70	2.29	1.45	1.31	1.19	1.10	1.68	0.95	0.89	0.50	_	
IsoL6/11	1.48	5.26	3.83	3.36	1.75	1.64	1.46	1.65	1.55	0.62	0.47	
HC7/11	5.37	6.44	16.90	13.98	6.83	7.10	2.53	8.89	9.16	1.43	1.57	

Ground state properties (heats of formation, reaction enthalpies, and ZPVEexclusive reaction energies)

Torsion	0.74	0.55	0.30	0.29	0.20	0.19	0.23	0.23	0.23	0.19	0.05
					bond lengths,	Å					
CHNO	0.015	0.006	0.008	0.007	0.010	0.010	0.011	0.010	0.010	0.007	_
MGHBL9	0.023	0.007	0.006	0.005	0.002	0.002	0.047	0.011	0.011	0.004	_
MGNHBL11	0.026	0.006	0.003	0.002	0.008	0.008	0.004	0.008	0.008	0.002	_
					bond angles,	0					
CHNO	2.04	0.70	0.68	0.64	0.68	0.68	1.00	0.77	0.77	0.70	_
					dihedral angles	,°					
CHNO	4.07	5.20	4.68	6.10	7.12	7.11	5.86	2.14	2.14	2.31	—

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022

Ground-state geometries

a

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022 Pavlo Dral, dr-dral.com

AIQM1 is better than DFT

... and better than X-ray!

Ground-state geometries

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, *Nat. Commun.* **2021**, *12*, 7022 Pavlo Dral, dr-dral.com

AIQM1 is transferable

data set	ODM2	B3LYP/	ωB97X/	ωB97X-D/	ωB97X/ ωB97X-D4/		ANI-	AIQM1	AIQM1	AIOMI	CCSD(T)*
		6-31G*	6-31G*	6-31G*	def2-TZVPP	def2-TZVPP	1ccx	@DFT*	@DFT	MQMI	/CBS
				6							
S66x8	0.75	1.70	0.97	1.22	0.49	0.49	2.20	0.69	0.52	0.56	0.09
WATER27	4.45	36.37	41.28	36.95	14.07	15.26	-	11.59	12.77	2.07	2.57

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022

THE REPORT OF TH	Exc	cite	d st	tates	5						
data set	ODM2	B3LYP/	ωB97X/	ωB97X-D/	ωB97X/	ωB97X-D4/	ANI-	AIQM1	AIQM1	AIQM1	CCSD(T)*
		0-310	0-310	0-510 ⁻	citation energie	s. eV	ICCX	WDF1	(UDF I		/CD5
Thiel's set	0.35	0.32	0.45	0.36	0.36	0.36	_	0.35	0.35	0.35	_
	2			3							

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022 Pavlo Dral, dr-dral.com

Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods

Peikun Zheng, Wudi Yang, Wei Wu, Olexandr Isayev,* and Pavlo O. Dral*

Cite This: J. Phys. Chem. Lett. 2022, 13, 3479-3491

ACCESS

Metrics & More

Article Recommendations

ABSTRACT: Enthalpies of formation and reaction are important thermodynamic properties that have a crucial impact on the outcome of chemical transformations. Here we implement the calculation of enthalpies of formation with a general-purpose ANI-1ccx neural network atomistic potential. We demonstrate on a wide range of benchmark sets that both ANI-1ccx and our other general-purpose data-driven method AIQM1 approach the coveted chemical accuracy of 1 kcal/mol with the speed of semiempirical quantum mechanical methods (AIQM1) or faster (ANI-1ccx). It is remarkably achieved without specifically training the machine learning parts of ANI-1ccx or AIQM1 on formation enthalpies. Importantly, we show that these data-driven methods provide statistical means for uncertainty quantification of their predictions, which we use to detect and eliminate outliers and revise reference experimental data. Uncertainty quantification may also help in the systematic improvement of such datadriven methods.

Supporting Information

Pavlo Dral, dr-dral.com

Heats of Formation: Outliers from Uncertainty Quantification

		(here)										
	B31VD	WBON W	B97x wB9	TXIN	D4/doc				(withou	AN	(with	outour
(DOMO PIG	-31G*	5-31C*	5-310+ T	ZVPD ZVPD	ZVPD G	MPS	G4	IQMA AIC	QM1 Outliers)	-1 CCX AI	VI-1CCV
	Ì	Ĩ	Ĩ	l	Ĩ	ĩ	Ì	Í	Í	"/	1	Ĩ
CHNO (ΔH_f) —	2.63	6.72	4.09	3.83	3.20	2.74	0.90	0.75	0.84	0.60	1.76	0.92
BIGMOL20 (ΔH_f) —	3.97	18.92	4.40	4.37	8.01	6.01	2.40	2.16	2.30	1.96	2.34	2.07
CONFORMERS30 (ΔH_f) —	2.21	10.37	3.46	3.01	4.50	3.10	0.79	0.64	0.46	0.44	0.96	0.96
ISOMERS44 (ΔH_f) —	1.16	8.08	3.57	3.53	4.52	3.78	0.44	0.37	0.42	0.42	1.34	0.59
ALKANES28 (ΔH_f) —	1.15	11.17	7.07	6.26	5.12	3.06	0.59	0.53	0.97	0.24	2.67	0.65
G2 (Δ <i>H</i> _f) —	2.59	4.99	4.31	4.07	2.60	2.39	0.60	0.52	0.97	0.44	2.62	0.62
G3 (Δ <i>H</i> _f) —	2.90	8.66	3.48	3.26	4.28	3.30	0.74	0.68	0.73	0.68	1.08	0.97
HEDM-45 (ΔH_f) —	5.55	9.06	4.33	3.90	3.46	3.48	1.20	2.27	3.80	0.96	2.87	1.25
PAH-103 (Δ <i>H_f</i>) —	2.10	14.72	2.93	2.89	7.63	5.73	1.96	1.13	1.19	0.79	1.75	1.15
CHNO (ΔH_r) —	1.92	1.75	1.41	1.39	1.32	1.29	0.94	1.02	1.06	0.22	2.63	0.68
CONFORMERS30 (ΔH_r) —	1.36	1.19	1.09	1.09	1.29	1.28	1.28	1.27	1.35	1.20	1.37	1.37
ISOMERS44 (ΔH_r) —	0.70	2.29	1.45	1.31	1.19	1.10	0.40	0.44	0.50	0.50	1.62	0.61
ALKANES28 (ΔH_r) —	0.34	1.90	1.10	0.94	1.74	1.14	0.28	0.32	0.59	0.39	0.20	0.08
AF6 (Δ <i>H</i> _r) —	1.32	3.07	0.55	1.68	1.28	0.73	1.02	1.05	0.45	—	3.67	—

Mean absolute errors (MAEs) in kcal/mol of benchmarked methods for various data sets. MAEs of AIQM1 and ANI-1ccx

P. Zheng, W. Yang, W. Wu, O. Isayev, P. O. Dral, J. Phys. Chem. Lett. 2022, 13, 3479

P. Zheng, W. Yang, W. Wu, O. Isayev, P. O. Dral, J. Phys. Chem. Lett. 2022, 13, 3479 Pavlo Dral, dr-dral.com

✓ Very good for ground-state, neutral species

If you can use AIQM1, do not use B3LYP/6-31G*!

- ✓ Provides uncertainty estimates
- × Still only limited to H, C, N, and O elements
- Can be improved for noncovalent, charged, and excited-state properties

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, *Nat. Commun.* **2021**, *12*, 7022 Pavlo Dral, dr-dral.com

Example of highly accurate, global, hole-free potential energy surface for rovibrational spectra with spectroscopic accuracy

Spectroscopic accuracy: error less than $1 \text{ cm}^{-1} \approx 0.003 \text{ kcal/mol} \approx 0.01 \text{ kJ/mol} \approx 0.0001 \text{ eV} \approx 0.000005 \text{ Hartree}$

Potential Energy Surface of CH₃Cl

Pavlo O. Dral

- Biomarker produced from a secondary metabolic process: useful for extraterrestrial life search
- Highly accurate and comprehensive line list of the rotation-vibration spectrum is needed
- TROVE (Theoretical ROVibrational Energies) fits analytic representation of PES, which is used in variational approach to solving nuclear motion problem

$$\left(\sum_{i=1}^{N} \frac{-\hbar^2}{2M_i} \nabla_i^2 + V\right) \Psi = E\Psi$$

Owens, Yurchenko, Yachmenev, Tennyson, Thiel, J. Chem. Phys. **2015**, 142, 244306 **TROVE:** Yurchenko, Thiel, Jensen, J. Mol. Spectrosc. **2007**, 245, 126

Ab Initio PES of CH₃³⁵Cl

- 44820 grid points (CBS-35^{HL})
- Energies up to *hc* · 50000 cm⁻¹ (140 kcal/mol)
- CCSD(T,FC)-F12b/CBS (extrapolated from ccpVTZ-F12 and cc-pVQZ-F12)
- Core-valence electron correlation corrections at CCSD(T)-F12b/cc-pCVQZ-F12
- Higher-order electron correlation corrections from CCSDT/aug-cc-pVTZ(+d for Cl), and CCSDT(Q)/aug-cc-pVDZ(+d for Cl)
- Scalar relativistic effects using the MVD1 approach at CCSD(T)/aug-cc-pCVTZ(+d for Cl)
- The diagonal Born-Oppenheimer correction at CCSD/aug-cc-pCVTZ(+d for Cl)

Owens, Yurchenko, Yachmenev, Tennyson, Thiel, J. Chem. Phys. 2015, 142, 244306

Owens, Yurchenko, Yachmenev, Tennyson, Thiel, J. Chem. Phys. 2015, 142, 244306

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Hastie, Tibshirani, Friedman, *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. 2nd ed.; Springer-Verlag, **2009**

[1] Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108
[2] Bartók, Csányi, Int. J. Quantum Chem. 2015, 115, 1051

Low-energy region

 Low-energy structures (<10,000 cm⁻¹) are most important: What is the error measure to take it into account?

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

[2] Partridge, Schwenke, J. Chem. Phys. **1997**, 106, 4618

Self-correcting ML

Self-correcting ML

wRMSEs in cm⁻¹ for the 'hold-out' prediction set for ML models trained on the training set with 10% points randomly sampled from the entire grid of 44819 points

	Layer 1	Layer 2	Layer 3	Layer 4		
	14.73 ± 12.63	8.76 ± 1.67	8.73 ± 1.67	8.73 ± 1.67		
Dral Owens Vurshanka Thiel J Cham Dhus 2017 146 244109						
Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108						

Structure-based sampling

- ML is good for interpolation
- ML can fail spectacularly for extrapolation
- How can we make sure that ML interpolates rather than extrapolates?

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Structure-based sampling

2-norm is the Euclidean distance between molecular descriptors

No preliminary energy calculations are needed!

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Low-energy region

Low-energy region

- Low-energy structures (<10,000 cm⁻¹) are most important:
 - How to teach ML to favor low-energy region?

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Take the first point to the training set, which is near equilibrium

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Targeted Optimization of Hyperparameters

$$Y^{\mathrm{ML}}(\mathbf{M}_{a}) = \sum_{i=1}^{N_{train}} \alpha_{i} K(\mathbf{M}_{a}, \mathbf{M}_{i})$$

$$K(\mathbf{M}_{a}, \mathbf{M}_{i}) = \exp\left(-\frac{\|\mathbf{M}_{i} - \mathbf{M}_{a}\|_{2}^{2}}{2\sigma^{2}}\right) \quad \text{Gaussian kernel}$$

$$\min_{\alpha} \sum_{i}^{N_{train}} (Y_{i}^{est} - Y_{i}^{ref})^{2} + \lambda \boldsymbol{\alpha}^{T} \mathbf{K} \boldsymbol{\alpha}$$

$$\boldsymbol{\alpha} = (\mathbf{K} + \lambda)^{-1} \mathbf{Y}^{ref}$$

 σ and λ are optimized by training ML model on 80% of the training set and minimizing error for the <10,000 cm^{-1} reference points in the remaining 20%

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Slicing

Sampling 10% from 44819 Points

wRMSEs in cm⁻¹ for the 'out-of-sample' prediction sets for ML models trained on a fraction of 44819 grid points

Training set size	Unsliced	3 slices
50%	0.37	0.62
25%	1.60	2.58
10%	4.83	3.63

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Slicing

ML model performance

Four-layer ML models, training sets obtained by:

- 1. 50%-ML structure-based sampling of 50% of grid points
- 2. r50%-ML random sampling of 50% of grid points
- 3. 25%-ML structure-based sampling of 25% of grid points
- 4. 10%-ML structure-based sampling of 10% of grid points
- 5. s10%-ML structure-based sampling of 10% of grid points from

sliced data

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Errors in cm⁻¹ for the 'hold-out' prediction sets

Model	WRMSE	RMSE	Largest outlier
50%-ML	0.37	6	476
r50%-ML	4.14	167	6919
25%-ML	1.60	16	1060
10%-ML	4.83	40	2859
s10%-ML	3.63	62	2190

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

ML model performance

Vibrational levels

Accuracy of vibrational spectra

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

Dral, Owens, Yurchenko, Thiel, J. Chem. Phys. 2017, 146, 244108

P. O. Dral, A. Owens, A. Dral, G. Csányi, J. Chem. Phys. 2020, 152, 204110

Pavlo Dral, dr-dral.com

Figure: Pavlo O. Dral, Tetiana Zubatiuk, Bao-Xin Xue, Learning from multiple quantum chemical methods: Δlearning, transfer learning, co-kriging, and beyond. In *Quantum Chemistry in the Age of Machine Learning*, Pavlo O. Dral, Ed. Elsevier: 2022, in press. Paperback ISBN: 9780323900492

P. O. Dral, A. Owens, A. Dral, G. Csányi, J. Chem. Phys. 2020, 152, 204110

Pavlo Dral, dr-dral.com

Accuracy of vibrational spectra

P. O. Dral, A. Owens, A. Dral, G. Csányi, J. Chem. Phys. 2020, 152, 204110

Pavlo Dral, dr-dral.com

VIB5 database

a 🕜	b	c		Global, ho	ole-free, highly accurate!
β ₁ r ₀	α ₁₄ r ₄				
c r ₃	HJ HJ HJ		No.	Key	Description
HI T12 H2 H3			1	XYZ	Nuclear positions in Cartesian coordinates
CH ₃ Cl	CH ₄	SiH ₄	2	INT	Nuclear positions in internal coordinates
			3	HF-TZ	Total energy at HF/cc-pVTZ
d 🍯	e	e _{θ_{NaOH}}	4	HF-QZ	Total energy at HF/cc-pVQZ
β_1 r_0			5	MP2	Total energy at MP2/cc-pVTZ
Cr ₃ Na		r _{NaO} r _{OH}	6	CCSD-T	Total energy at CCSD(T)/cc-pVQZ
H1 T12 H2	H3		7	TBE	Theoretical best estimate of ab initio deformation energies
CH₃F		NaOH	8	MP2_grad_xyz	Energy gradient in Cartesian coordinates at MP2/cc-pVTZ
Molecule		Grid size		MP2_grad_int	Energy gradient in internal coordinates at MP2/cc-pVTZ
		44010		CCSD-T_grad_xyz	Energy gradient in Cartesian coordinates at CCSD(T)/cc-pVQZ
CH ₃ Cl		44819		CCSD-T_grad_int	Energy gradient in internal coordinates at CCSD(T)/cc-pVQZ
CH ₄		97217 ^{<i>a</i>}		CBS	Deformation energies at CCSD(T)-F12b/CBS
SiH ₄		84002		VTZ	Deformation energies at CCSD(T)-F12b/cc-pVTZ-F12 (only for CH ₃ Cl molecule)
CH ₂ F		82653		VQZ	Deformation energies at CCSD(T)-F12b/cc-pVQZ-F12 (only for CH ₃ Cl molecule)
		02000		CV	Deformation energy corrections to account for core-valence electron correlation
NaOH		15901		НО	Deformation higher-order coupled cluster terms beyond perturbative triples
Total: 5 molec	ules	324592 ^{<i>a</i>}		SR	Deformation scalar relativistic (SR) effects
				DBOC	Deformation diagonal Born–Oppenheimer corrections (only for CH ₃ Cl, CH ₄ , CH ₃ F, and NaOH molecules)

MP2-aQZ

19

L. Zhang, S. Zhang, A. Owens, S. N. Yurchenko, P. O. Dral. Sci. Data 2022, 9, 84

Pavlo Dral, dr-dral.com

Deformation energies at MP2/aug-cc-pVQZ (only for CH₃Cl molecule)

Units Å Å; degree Hartree Hartree Hartree Hartree $\rm cm^{-1}$ Hartree/Å

Hartree/Å; Hartree/

Hartree/Å; Hartree/

degree Hartree/Å

degree cm^{-1}

cm⁻¹ cm^{-1}

cm⁻¹

cm⁻¹ cm^{-1}

 cm^{-1}

cm⁻¹

MLatom

A Package for Atomistic Simulations with Machine Learning

Developed for practical and efficient application of machine learning in computational

chemistry.

Flowchart

3rd-party interfaces

DeePMD-kit	

GAP

sGDML

TorchANI

PhysNet

ASE

Hyperopt

Sparrow

NX

Gaussian

MNDO

deepmodeling.com

libatoms.github.io/GAP

sgdml.org

aiqm.github.io/torchani

github.com/MMunibas/PhysNet

wiki.fysik.dtu.dk/ase

hyperopt.github.io/hyperopt

scine.ethz.ch/download/sparrow

<u>newtonx.org</u>

gaussian.com

mndo.kofo.mpg.de

Pavlo Dral, dr-dral.com

Acknowledgements

PCOSS

Thank you for your attention!

Funding:

Pavlo Dral, dr-dral.com