Author: Pavlo Dral

MLatom 1.0

MLatom 1.0 release is now available. Read more ›

Machine Learning Accelerates Excited-State Dynamics

P. O. Dral, M. Barbatti, W. Thiel, Nonadiabatic Excited-State Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018, 9, 5660–5663. Read more ›

Self-Correcting Machine Learning and Structure-Based Sampling

P. O. Dral, A. Owens, S. N. Yurchenko, W. Thiel, Structure-Based Sampling and Self-Correcting Machine Learning for Accurate Calculations of Potential Energy Surfaces and Vibrational Levels. J. Chem. Phys. 2017, 146, 244108. Read more ›

Correcting Differences with Machine Learning

R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. J. Chem. Theory Comput. 2015, 11, 2087–2096. Read more ›

Machine Learning of Semiempirical Parameters

P. O. Dral, O. A. von Lilienfeld, W. Thiel, Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations. J. Chem. Theory Comput. 2015, 11, 2120–2125. Read more ›

Top