MLatom 1.2: ML absorption spectra
Bao-Xin Xue, Mario Barbatti, Pavlo O. Dral, Machine Learning for Absorption Cross Sections, J. Phys. Chem. A 2020, 124, 7199–7210. DOI: 10.1021/acs.jpca.0c05310. Read more ›
Bao-Xin Xue, Mario Barbatti, Pavlo O. Dral, Machine Learning for Absorption Cross Sections, J. Phys. Chem. A 2020, 124, 7199–7210. DOI: 10.1021/acs.jpca.0c05310. Read more ›
Pavlo O. Dral, Quantum Chemistry Assisted by Machine Learning. In Advances in Quantum Chemistry: Chemical Physics and Quantum Chemistry, Volume 81, 1st ed.; Kenneth Ruud, Erkki J. Brändas, Eds. Academic Press: 2020; Vol. 81. Read more ›
P. O. Dral, MLatom: A Program Package for Quantum Chemical Research Assisted by Machine Learning. J. Comput. Chem. 2019, 40, 2339–2347. DOI: 10.1002/jcc.26004. Read more ›
P. O. Dral, M. Barbatti, W. Thiel, Nonadiabatic Excited-State Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018, 9, 5660–5663. Read more ›
P. O. Dral, A. Owens, S. N. Yurchenko, W. Thiel, Structure-Based Sampling and Self-Correcting Machine Learning for Accurate Calculations of Potential Energy Surfaces and Vibrational Levels. J. Chem. Phys. 2017, 146, 244108. Read more ›
R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach. J. Chem. Theory Comput. 2015, 11, 2087–2096. Read more ›
P. O. Dral, O. A. von Lilienfeld, W. Thiel, Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations. J. Chem. Theory Comput. 2015, 11, 2120–2125. Read more ›