Density functional theory (DFT) methods are by far the most popular approaches for electronic structure calculations. However, the “best” functional remains elusive despite the increasing variety of functionals and continuous efforts to improve their computational accuracy.  In our work published in Advanced …

Adv. Sci.: The Best DFT Functional Is the Ensemble of Functionals Read more »

Recently, we published a paper in JOC about the surprising dynamics phenomena in the Diels–Alder reaction of fullerene C60. The AI-accelerated molecular dynamics uncovers that in a small fraction (10%) of reactive trajectories, the diene molecule (2,3-dimethyl-1,3-butadiene) is roaming around …

JOC: Surprising dynamics phenomena in the Diels–Alder reaction of C60 uncovered with AI Read more »

My review ‘AI in computational chemistry through the lens of a decade-long journey’ was published open access as an invited Feature Article in Chemical Communication. It gives a perspective on the progress of AI tools in computational chemistry through the …

Chem. Commun. Feature Article: “AI in computational chemistry through the lens of a decade-long journey” Read more »

Mario Barbatti*, Mattia Bondanza, Rachel Crespo-Otero, Baptiste Demoulin, Pavlo O. Dral, Giovanni Granucci, Fábris Kossoski, Hans Lischka, Benedetta Mennucci, Saikat Mukherjee, Marek Pederzoli, Maurizio Persico, Max Pinheiro Jr, Jiri Pittner, Felix Plasser, Eduarda Sangiogo Gil, Lijljana Stojanovic. The Newton-X platform: new software developments for surface hopping and nuclear ensembles. J. Chem. Theory Comput. 2022, ASAP. DOI: 10.1021/acs.jctc.2c00804. …

The Newton-X platform for surface hopping and nuclear ensembles Read more »