You can now use MLatom to perform TDDFT and TDA calculations with MLatom and parse Gaussian output files.This can be useful for UV/vis spectra simulations via single-point convolution and nuclear-ensemble approach (NEA).We also welcome a new contributor to MLatom: Vignesh Kumar …

TDDFT and TDA calculations + parsing of Gaussian output files Read more »

The explosion of quantum chemical datasets (see our overview of them) satisfies the appetite of those data-hungry machine learning potentials while raising another critical question: how to learn data in different fidelities? Here, we propose the all-in-one (AIO) ANI model, …

All-in-one: Learning across quantum chemical levels. Better than transfer learning! Read more »

Recently, we published a paper in JOC about the surprising dynamics phenomena in the Diels–Alder reaction of fullerene C60. The AI-accelerated molecular dynamics uncovers that in a small fraction (10%) of reactive trajectories, the diene molecule (2,3-dimethyl-1,3-butadiene) is roaming around …

JOC: Surprising dynamics phenomena in the Diels–Alder reaction of C60 uncovered with AI Read more »

AIQM2 is the long-awaited successor of the highly successful AIQM1 (see Nat. Commun. paper). It has overall improved accuracy and much better performance for transition states, where it produces high-quality geometries and barrier heights: it is better than B3LYP/6-31G* but orders of …

AIQM2 is out: better and faster than B3LYP for reaction simulations! Read more »

Recently, we published a paper in JCTC about the end-to-end physics-informed active learning with data-efficient construction of machine learning potentials. It shortens molecular simulation time to a couple of days which could have taken weeks of pure quantum chemical calculations. The active …

JCTC: Physics-informed active learning for accelerating quantum chemical simulations Read more »