AIQM2 is the long-awaited successor of the highly successful AIQM1 (see Nat. Commun. paper). It has overall improved accuracy and much better performance for transition states, where it produces high-quality geometries and barrier heights: it is better than B3LYP/6-31G* but orders of …

AIQM2 is out: better and faster than B3LYP for reaction simulations! Read more »

Recently, we published a paper in JCTC about the end-to-end physics-informed active learning with data-efficient construction of machine learning potentials. It shortens molecular simulation time to a couple of days which could have taken weeks of pure quantum chemical calculations. The active …

JCTC: Physics-informed active learning for accelerating quantum chemical simulations Read more »